

Stage-Dependent Susceptibility of *Bufo arenarum* Embryos to Cadmium

Jorge Herkovits* and Cristina S. Pérez Coll

Programa Seguridad Química en Reproducción y Desarrollo Embrionario, Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación CIMAE, Luis Viale 2831, (1416) Buenos Aires, Argentina

Cadmium (Cd) is one of the most toxic heavy metals affects a wide spectrum of organisms (Ravera 1984). occurrence in the environment natural rather low. but it is significantly increased by anthropogenic agricultural inputs, **a**5 and industrial such applications (Davis 1984). From an ecotoxicological view, amphibians are useful indicators freshwater contamination (Fernández et al. 1989), while other hand amphibian embryos and larvae in the food chains in which Cd is and Karolewsky 1979). According to previous studies, the effects of Cd on amphibian embryos treated the two blastomere stage onwards include size, development. reduced body congenital malformations, behavioral disorders and eventually (Pérez-Coll et al. 1985). of death The degree heavy metal toxicity could be related to stage susceptibility. For instance. lead exposure different stages of Bufo arenarum embryos show that the neuromuscular activity stage (stage 16) is twice lead than neurulae or sensitive to gill circulation stages (Pérez-Coll and Herkovits 1990). The purpose study is to report the minimal Cd concentration Bufo arenarum embryos at six different to arrest their development and die within 24 hours.

MATERIALS AND METHODS

Ovulation was induced by subcutaneously injecting <u>Bufo arenarum</u> adult females with 2000 IU of human chorionic gonadotrophin (HCG) plus 1000 IU of pregnant male serum gonadotrophin (PMSG). Occytes were fertilized <u>in vitro</u> and the eggs were maintained in 10% Holtfreter solution (HS) until the 2-blastomere stage (Del Conte and Sirlin 1951) was reached.

Send reprints requests to Dr. Jorge Herkovits at the above address.

The gelatinous coats were removed with 2% thioglycolic acid solution neutralized with NaOH at pH 7.4. Three mating pairs of adult Bufo arenarum contributed in the same proportion to the experimental groups. Batches of 30 embryos (in duplicate, a total of 60 individuals for were placed in 20 different condition) concentrations in 10% Haltfreter solution ranging between 0.1 and 4 mg Cd²⁺/L (Cd atomic absorption standard solution, Sigma) from the following stages: A) 2 blastomeres (S.3); B) late gastrulae (S.12); C) neural tube (S.16); D) gill circulation (S.20); opercular folds (S.23) and F) complete operculum (S.25). Control groups were maintained in 10% Survival of control embryos was over 90%. Embryos were kept at temperatures ranging between 18-21°C. The results were statistically analyzed by using X² test.

RESULTS AND DISCUSSION

This study confirms the severe toxicity of Cd to amphibian embryos. A concentration of 0.25 mg ${\rm Cd}^{2+}/{\rm L}$ arrests the development of 100% of <u>Bufo</u> <u>arenarum</u> embryos at neurulae (stage 16) within 24 hours (Fig.1).

With respect to this stage-dependent susceptibility study, we emphasize embryo lethality instead of malformations or other disorders because: 1) although the same teratogenic effect can be obtained by different toxic agents and even at different embryonic stages (Pérez-Coll et al. 1985 and 1986; Pérez-Coll and Herkovits 1990), some other teratogenic effects are stage-dependent (Herkovits and Fernández 1978), and 2) this study also includes embryonic stages in which the morphogenic processes are advanced or even completed.

The survival of Cd-treated embryos is markedly stagedependent (p<0,01), with the neural tube stage 16 times more sensitive than the blastulae. During postneural stages, the embryos become gradually more resistant. At end of embryonic development, however, tolerance to Cd is still one fourth that of blastula stage. The interference that Cd exerts on embryonic development appears to be related to its multiple effects upon nucleic acids and structural enzymatic proteins (Jacobson and Turner 1980), as well as on the availability of essential elements, energyrich molecules (Reddy et al. 1988) and oxygen consumption (Herkovits and Jatimtinsky 1986) which result in a critical reduction of embryonic performance and finally death.

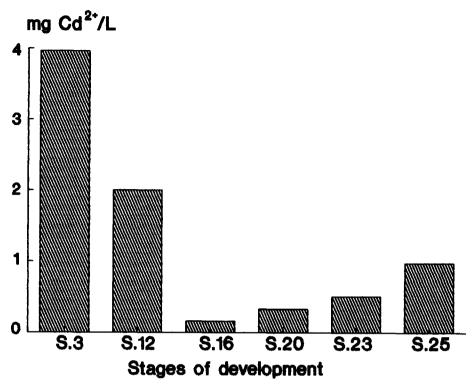


Figure 1. Concentrations of cadmium that cause 100% mortality of <u>Bufo arenarum</u> embryos within 24 hours of treatment.

The stage-dependent susceptibility to Cd of Bufo arenarum embryos could be related to stage-dependent features in the uptake of this heavy metal (Michibata 1981). Preliminary results on uptake of Cd by Bufo <u>arenarum</u> show that Cd incorporation is not dependent, at least between the last developmental stages (Zeni et al. 1988). Although embryos at the gill circulation (S.20) and complete operculum (S.25) stages present similar levels of Cd uptake, S.25 is about three times more resistant to Cd than S.21. Therefore, in the stage-dependent susceptibility other mechanisms such as changes in the detoxification capacity, e.g., synthesis of metallothioneins (Suzuki 1986) could also be involved. It is noteworthy et al. most susceptible period αf embryonic the development of <u>Bufo</u> <u>arenarum</u> to Cd, as well as other toxic agents, is during the beginning of organ tissue differentiation (Herkovits and Fernández 1978).

Acknowledgment. This work was supported by grants from CONICET and CIC. We thank A.M. Martinez for secretarial assistance.

- Davis RD (1984) Cadmium, a complex environmental problem. Experientia 40:117
- Del Conte E and Sirlin L (1951) The first stages of <u>Bufo arenarum</u> development [in Spanish]. Acta Zool Lilloana 12:495-499
- Dmowsky K and Karolewsky MA (1979) Cumulation of zinc, cadmium and lead in invertebrates and in some vertebrates according to the degree of an area contamination. Ekol Pol 27: 333-349
- Ferandez M, Gauthier L and Jaylet A (1989) Use of newt larvae for in vivo genotoxicity testing of water: results on 19 compounds evaluated by the micronucleus test. Mutagenesis 4(1):17-26
- Herkovits J and Fernández A (1978) Tolerancia a noxas durante el desarrollo embrionario. Medicina (Bs. Aires) 39:400-408
- Herkovits J and Jatimlinsky J (1986) Cadmium effect on oxygen consumption in <u>Bufo</u> <u>arenarum</u> embryos [in Spanish]. Medicina (Bs. Aires) 46:603
- Jacobson KB and Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16:1-37
- Michibata H (1981) Uptake and distribution of cadmium in the egg of the teleost <u>Oryzias</u> <u>latipes</u>. J Fish Biol 19:691-696
- Pérez-Coll CS, Herkovits J and Salibián A (1985) Effects of cadmium on the development of an amphibian. Arch Biol Med Exp 18:33-40
- Pérez-Coll CS, Herkovits J and Salibián A (1986) Teratogenic effect of cadmium on <u>Bufo arenarum</u> during gastrulation. Experientia 42:1174-1176
- Pérez-Coll CS, Herkovits J and Salibián A (1988) Embryotoxicity of lead on <u>Bufo</u> <u>arenarum</u>. Bull Environ Contam Toxicol 41:247-252
- Pérez-Coll CS, Herkovits J (1990) Stage dependent susceptibility to lead in <u>Bufo arenarum</u> embryos. Environ Pollut 63:239-245
- Ravera O (1984) Cadmium in freshwater systems. Experientia 40:2
- Reddy RS, Jinna RR, Uzodinna JE and Desaiah D (1988) In vitro effect of mercury and cadmium on brain Ca²⁺ ATPase of the catfish <u>Ictalurus punctatus</u>. Bull Environ Contam Toxicol 41:324-328
- Suzuki KT, Itoh N, Ohta K and Sunaga H (1986) Amphibian metallothionein: induction in the frogs <u>Ranajaponica</u>, <u>Rana nigromaculata</u> and <u>Racophorus</u> schlegelli. Comp Biochem Physiol 83:253-259
- Zeni S, Pérez-Coll CS and Herkovits J (1988) Cadmium uptake by <u>Bufo</u> <u>arenarum</u> embryos. Comun Biol 7:69

Received April 24, 1992; accepted December 2, 1992.